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Abstract. Some generating functions involving harmonic oscillator functions are obtained 
as Lauricella functions and Appell functions. 

1. Introduction 

In my recent paper (Birtwistle 1977), to which I shall frequently refer and therefore 
refer to as B, I derived some new results on harmonic oscillator functions including the 
evaluation in closed form of generating functions of the type in equation ( 5 )  below. This 
work has been taken up by Labarthe (1978) who has introduced a graphical method 
with the aim of facilitating the manipulations. Dub6 and Herzenberg (1975), Domcke 
and Cederbaum (1977) and Birtwistle and Modinos (1972) have applications of 
expressions of a similar type. 

In B I also pointed out that progress could be made in obtaining generating functions 
for more general integrals involving Hermite functions which are of interest in 
mathematical physics and are of the class defined by equation (6) below. The require- 
ment for more general results is illustrated in Birtwistle and Herzenberg (1971) and 
Holstein (1978). I suggested a result which could be used (Turnbull and Aitken 1945). 
Since then I have become aware of a powerful result obtained by Carlson (1972) which 
expresses the required quantities in terms of Lauricella (1893) functions. Section 2 is 
the statement of this theorem. In 8.3 it is shown how Carlson’s theorem can be used to 
obtain new generating functions. Some specific examples are worked out in detail in 
5 4. 

2. Carlson’s theorem 

For P and A real symmetric n x n matrices and A being positive definite, 

{Wl j{-m) (x‘Px)” exp(-x’Ax) dx 

= r rn”r (v  +n/2)R,($,  . . . , $; A I , .  . . , A,,)/I‘(n/2)lA11’2 (1) 
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where the A ,  are the eigenvalues of PA-’ and one of the following conditions is satisfied: 
( i )  P is positive definite and Re(v) > - 4 2  

(ii) P is non-negative define and Re( v )  > 0 

(iii) P is real and symmetric and v is a non-negative integer. 
Here, 

or that, 

or that, 

(1 - z p  x . . . x (1 - 2,)’”” 
X 

m l ! .  . . m,,! 

R,( . )  is the symmetrised form of Lauricella’s function (Lauricella 1893) which was 
introduced by Carlson (1963) and is symmetric under- permutation of the subscripts 
1 . . . n and is a homogeneous function of degree - v  in zl, . . . , 2,. 

In the case of two variables the Lauricella functions reduce to Appell functions (Appell 
and Kampd de FCriet, 1926) and i i l  particular 

Carlson‘s theorem is an extensioc of the one which I used before In the next section 
some possible applications are considered. 

3. The applications of Carlson’s theorem 

As far as possible the notation is the same as in B.  The ketln) is understood to be 
in) = In, a ,  d) ,  the states being normalised harmonic oscil!ator states with scaling 
parametei a and centred ai -C The generating functions previous:) evaiuateti were oi 
the forni, 

i:; 

and those of t i i :  pape! are of the forrr: 
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Here, as is usual in quantum theory, 
m 

(n lQlp)  = I + n ( a n ( X  +dn))Q(x)+,(afi(x +d,)) dx, (7) 
--OD 

with the 4" being normalised harmonic oscillator functions. The elements of the matrix 
A are to be defined as in B and originate with the Mehler formula (Mehler 1866). In 
order to use Carlson's (1972) theorem we have to eliminate the term in the argument of 
the Gaussian which is linear in x. Since A is symmetric, this can be done by transforming 
to 

q = x -:A-' b, (8) 

c'=c+!b'A-'b.  (9) 

and changing the constant term in the Gaussian from the c of B to c ' ,  

The expression equation (9) is the argument of the Gaussian in the final result as 
calculated in B and evaluated in some individual cases by previous authors (Manneback 
195 1, Mnatsakanyan 197 1, Mnatsakanyan and Naidis 1975). Hence the generating 
functions contain the common Gaussian factor as it is intuitively obvious that they must. 
We have freedom to choose matrix P and index v, subject to the conditions of equation 
( l ) ,  to derive a variety of results. 

4. Some specific examples 

Consider the instance when two sets of states are involved. Let Greek letters be 
understood to be associated with one set of Hermite functions, and Latin letters with a 
second set, displaced from the first and with a different frequency (scaling). Define 

A = (Mnwn/Mwu$y2 = anla, 
where M, is the reduced mass and w ,  the angular frequency of the state n and M, and 
w, are those for the state F.  Results are much easier to obtain in the case when A = 1, 
which corresponds to the states having the same vibration frequency, but then they are 
of very restricted value in molecular physics. However, without loss of generality we 
may set a ,  = 1 so that A = an = a in the following. 

The generating function 

Ws, t ) =  C C SntwI(nIp)12 
m m  

n = O  m=O 

= 2 A [ ( 1 - ~ ~ ) ( l - t ~ ) ( l + A ~ ) ~ + 4 A ~ ( ~  - t )2]-1 '2 

-2A( 1 - s)( 1 - t )  
exp((l + s)( 1 - t )  + A  2(  1 - s ) ( l +  t )  

was obtained and used for A = 1 by Manneback (1951) and in the form above for 
general A by Mnatsakanyan (197 1). Here A = $A 2(dn - d,)2. Now combining the 
results of my previous paper (Birtwistle 1977) with Carlson (1972) we can obtain the 
analogous generating fmctions: 
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The matrix A is defined by 

2 f f s  

and 

Note that in condensing my earlier work for publication I incorrectly introduced a 
minus sign into the definition of all of the elements of A. The general definition in B 
holds only for n > 2 .  Take 

PI=(: 2 b,. 

n = O  fi  = O  

=SAS, t ) U v  + 1)R,(t, t ;  A I ,  A 2 1  

=s2(s, m v + i ) F l ( v , t , i ;  1; i - h 2 ) .  (15) 
with A I ,  h 2  given by equation (14), q by equation (8) and S2(s, t )  by equation (10). 

Now take 

Calculating the eigenvalues A 3  and A 4  we find 

A ~ ( s ,  t )  = - 2 A 1 ( . ~ ,  t )  

A ~ ( s ,  t )  = A ~ ( - s ,  - t )  

= ( h 3 ( ~ ,  t)lAl)-' 

and hence the result 
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In the case of equal frequencies the eigenvalues are given by equations (14) and (18) 
with A reducing to: 

The apparent simplicity of these generating functions is to a certain extent deceptive 
because we have used the transformation equation (8) and therefore the operators have 
the unusual feature that they contain the auxiliary variables s and t. In the case just 
discussed in terms of the x of equation (7) 

(21) 

This complication can be overcome by constructing the desired linear combination of 
generating functions. It should also be possible to derive recurrence schemes of the 
type obtained by Smith (1969). 

[ d , ~ 2 ( 1 - ~ ) ( 1 + t ) + d , ( l + s ) ( l - t ) ]  
q = x -  

[(1+ s)( l  - t )  + a2(1 - s ) ( l+  t ) ]  
. 

5. Conclusions 

It has been shown that some useful generating functions can be obtained in closed form 
in terms of Lauricella (1893) functions as symmetrised by Carlson (1963). There is a 
large body of results known for Lauricella functions, which for two variables are Appell 
functions and generating functions are known for them. This indicates that other useful 
results can be obtained, especially if the special methods for sparse matrices (Labarthe 
1978) are used. 

Acknowledgment 

I thank one of the referees for pointing out an ambiguity in the text. 

References 

Appell P and Kampt de Feriet J 1926 Fonctions Hypirgtometriques: Polynomes d’Hermire (Paris: Gauthier- 

Birtwistle D T and Herzenberg A 1971 J. Phys. B: Atom. Molec. Phys. 4 43-70 
Birtwistle D T and Modinos A 1972 J.  Phys. B: Atom. Molec. Phys. 5 445-6 
Birtwistle D T 1977 J. Phys. A: Math. Gen. 10 677-87 
Carlson B C 1963 J. Math. Anal. A p p l .  7 452-70 
- 1972 C.R. Acad. Sci. Paris 274 1458-61 
Domcke W and Cederbaum L S 1977 Phys. Rec. A 16 1465-82 
Dube L and Herzenberg A 1975 Phys. Ret.. A 11 1314-25 
Holstein T 1978 Phil. Mag. B 37 49-62 
Labarthe J-J 1978 J.  Phys. A: Math. Gen. 11 1009-15 
Lauricella G 1893 Rend. Circ. Mat. Palermo 7 11 1-58 
Manneback C 1951 Physica 17 1001-10 
Mehler F G 1866 J. Marh. Lpz. 66 161-76 
Mnatsakanyan A Kh 1971 Opt. Spectrosc. 30 544-6 
Mnatsakanyan A Kh and Saidis G V 1975 Sot.. Phys.-Tech. Phys. 19 1113-5 
Smith W L 1969 J.  Phys. B: Atom. Molec. Phys. 2 1 4  (Corrigendum 908) 
Turnbull H W and Aitken A C 1945 Theory of Canonical Matrices (London: Blackie) p 183 

Villars) 


